Insect as a promising food source: implications for sustainable consumption across species. a review

Authors

  • Alishbah Mohsin Department of Agricultural Engineering, Khwaja Fareed university of engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Muhammad Ali Institute of Agro-Industry and Environment, Islamia University of Bahawalpur, Punjab, Pakistan
  • Muhammad Saqlain Zaheer Department of Agricultural Engineering, Khwaja Fareed university of engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Kamran Ikram Department of Agricultural Engineering, Khwaja Fareed university of engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Muhammad Ahmad Mudassir Department of Chemistry, University of Management and Technology (UMT), Sialkot Campus, Sialkot, Punjab, Pakistan
  • Shabbir Hussain Institute of Chemistry, Khwaja Fareed university of engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Shabbir Hussain Department of Agricultural Engineering, Khwaja Fareed university of engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Aleena Kanwal Department of Agricultural Engineering, Khwaja Fareed university of engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Ayesha Younas Department of Agricultural Engineering, Khwaja Fareed university of engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Yasir Niaz Department of Agricultural Engineering, Khwaja Fareed University of Engineering and information technology, Rahim Yar Khan, 64200, Pakistan
  • Sehrish Qayyum University Institute of Information Technology (UIIT), PMAS-Arid Agriculture University Rawalpindi, Pakistan

DOI:

https://doi.org/10.55627/zoobotanica.002.01.0591

Keywords:

Edible insects, protein-rich source, cultural acceptance, environmental impact.

Abstract

Insects provide a crucial source of nutrients for human beings and many other animal species. Several insects, such as black soldier flies, house crickets, fruit flies, houseflies, and mealworms, play crucial roles in providing essential micronutrients. Processing can transform insects into different formats, including pastes, powders, and meals. Edible insects (black soldier fly, crickets) have their potential to be farmed by using organic food waste, including manure, compost, and vegetable scraps unsuitable for individual consumption. Eating insects appears to have a lower environmental impact in relation to climate change compared to raising cattle, pigs, or chickens. Consuming insects appears to offer a sustainable solution for fulfilling the nutritional needs of our expanding global community. To better comprehend the potential socio-economic advantages of insect gathering and farming, further investigation is necessary to determine how these practices can improve food security in low-income contexts. Insects appear to raise minimal concerns regarding animal welfare, though the extent to which they may experience discomfort and pain remains unclear.

References

Aarnink, A. J. A., Keen, A., Metz, J. H. M., Speelman, L., & Verstegen, M. W. A. (1995). Ammonia emission patterns during the growing periods of pigs housed on partially slatted floors. Journal of Agricultural Engineering Research, 62(2), 105–116.

Allegretti, G., Talamini, E., Schmidt, V., Bogorni, P. C., & Ortega, E. (2018). Insect as feed: An energy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. Journal of Cleaner Production, 171, 403–412.

Astuti, D. A., Damanik, R. H., Anggraeny, A., & Putri, Y. D. (2018). Utilization of insect as a protein alternative for goat rations. Jointly Published By, 253.

Ayuso, R. (2011). Update on the Diagnosis and Treatment of Shellfish Allergy. Current Allergy and Asthma Reports, 11(4), 309–316. https://doi.org/10.1007/s11882-011-0198-3

Bae, Y., & Choi, J. (2021). Consumer acceptance of edible insect foods: An application of the extended theory of planned behavior. Nutrition Research and Practice, 15(1), 122–135.

Ban, K. (2012). A message from the UN Secretary General for the opening session of the 39th Session of the Committee on World Food Security. Rome.

Banjo, A. D., Lawal, O. A., Fasunwon, B. T., & Alimi, G. O. (2010). Alkali and heavy metal contaminants of some selected edible arthropods in South Western Nigeria. Am.-Eurasian J.Toxicol. Sci, 2, 25–29.

Barker, D., Fitzpatrick, M. P., & Dierenfeld, E. S. (1998). Nutrient composition of selected whole invertebrates. Zoo Biology, 17(2), 123–134. https://doi.org/10.1002/(SICI)1098-2361(1998)17:2<123:AID-ZOO7>3.0.CO;2-B

Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296–313. https://doi.org/10.1111/1541-4337.12014

Bequaert, J. C. (1921). Insects as food: How they have augmented the food supply of mankind in early and recent times. American Museum of Natural History.

Bernard, T., & Womeni, H. M. (2017). Entomophagy: Insects as food. Insect Physiology and Ecology, 2017, 233–249.

Bovera, F., Loponte, R., Marono, S., Piccolo, G., Parisi, G., Iaconisi, V., Gasco, L., & Nizza, A. (2016). Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Journal of Animal Science, 94(2), 639–647.

Broekman, H. C. H. P., Knulst, A. C., De Jong, G., Gaspari, M., Den Hartog Jager, C. F., Houben, G. F., & Verhoeckx, K. C. M. (2017). Is mealworm or shrimp allergy indicative for food allergy to insects? Molecular Nutrition & Food Research, 61(9), 1601061. https://doi.org/10.1002/mnfr.201601061

Chakravorty, J., Ghosh, S., Megu, K., Jung, C., & Meyer-Rochow, V. B. (2016). Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. Journal of Asia-Pacific Entomology, 19(3), 711–720.

Chapagain, A. K., & Hoekstra, A. Y. (2003). Virtual water flows between nations in relation to trade in livestock and livestock products (Vol. 13). Citeseer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c683cd65bbcd562fc112d38d5ebde534e6183f92

Chen, X., Feng, Y., & Chen, Z. (2009). Common edible insects and their utilization in China. Entomological Research, 39(5), 299–303. https://doi.org/10.1111/j.1748-5967.2009.00237.x

Cheng, A., Raai, M. N., Zain, N. A. M., Massawe, F., Singh, A., & Wan-Mohtar, W. A. A. Q. I. (2019). In search of alternative proteins: Unlocking the potential of underutilized tropical legumes. Food Security, 11, 1205–1215.

Chomchai, S., & Chomchai, C. (2018). Histamine poisoning from insect consumption: An outbreak investigation from Thailand. Clinical Toxicology, 56(2), 126–131. https://doi.org/10.1080/15563650.2017.1349320

Chow, C.-Y., Riantiningtyas, R. R., Sørensen, H., & Frøst, M. B. (2021). School children cooking and eating insects as part of a teaching program–Effects of cooking, insect type, tasting order and food neophobia on hedonic response. Food Quality and Preference, 87, 104027.

Collavo, A., Glew, R. H., Huang, Y.-S., Chuang, L.-T., Bosse, R., & Paoletti, M. G. (2005). House cricket small-scale farming. Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails, 27, 515–540.

Coulter, J. K. (2004). World Agriculture: Towards 2015/2030. An FAO Perspective. Edited by J. Bruinsma. Rome: FAO and London: Earthscan (2003), pp. 432, pounds 35.00 Paperback. ISBN 92-5-104835-5. Experimental Agriculture, 40(2), 269–269.

de Castro, R. J. S., Ohara, A., dos Santos Aguilar, J. G., & Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76, 82–89.

de Gier, S., & Verhoeckx, K. (2018). Insect (food) allergy and allergens. Molecular Immunology, 100, 82–106.

De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., & Dabbou, S. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology, 209, 211–218.

DeFoliart, G. R. (2012). Insects as a global food resource: The history of talking about it at the University of Wisconsin. University of Wisconsin: Madison, WI, USA. https://insectsasfood.russell.wisc.edu/wp-content/uploads/sites/246/2012/09/Manuscript.pdf

Deroy, O., Reade, B., & Spence, C. (2015). The insectivore’s dilemma, and how to take the West out of it. Food Quality and Preference, 44, 44–55.

Di Mattia, C., Battista, N., Sacchetti, G., & Serafini, M. (2019). Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Frontiers in Nutrition, 6, 106.

Dobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291

Dörper, A., Veldkamp, T., & Dicke, M. (2021). Use of black soldier fly and house fly in feed to promote sustainable poultry production. Journal of Insects as Food and Feed, 7(5), 761–780. https://doi.org/10.3920/JIFF2020.0064

Dossey, A. T., Tatum, J. T., & McGill, W. L. (2016). Modern insect-based food industry: Current status, insect processing technology, and recommendations moving forward. In Insects as sustainable food ingredients (pp. 113–152). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128028568000053

Dreassi, E., Cito, A., Zanfini, A., Materozzi, L., Botta, M., & Francardi, V. (2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52(3), 285–294. https://doi.org/10.1007/s11745-016-4220-3

Dupont, J., & Fiebelkorn, F. (2020). Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany. Food Quality and Preference, 85, 103983.

Dzerefos, C. M., & De Sousa, L. O. (2020). Insect Protein Squashes Preconceived Ideas of Entomophagy, Sparking Critical Reflection on Sustainability and Educational Resources. The Geography Teacher, 17(3), 117–124. https://doi.org/10.1080/19338341.2020.1796740

Ekpo, K. E., & Onigbinde, A. O. (2007). Characterization of lipids in winged reproductives. Pakistan Journal of Nutrition, 6(3), 247–251.

El Hassan, N. M., Hamed, S. Y., Hassan, A. B., Eltayeb, M. M., & Babiker, E. E. (2008). Nutritional evaluation and physiochemical properties of boiled and fried tree locust. Pakistan Journal of Nutrition, 7(2), 325–329.

Fellows, P., Halloran, A., Muenke, C., Vantomme, P., & van Huis, A. (2014). Insects in the human food chain: Global status and opportunities. Food Chain, 2, 103–118.

Fessler, D., & Navarrete, C. D. (2003). Meat is good to taboo: Dietary proscriptions as a product of the interaction of psychological mechanisms and social processes. Journal of Cognition and Culture, 3(1), 1–40.

Fiala, N. (2008). Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production. Ecological Economics, 67(3), 412–419.

Finke, M. D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21(3), 269–285. https://doi.org/10.1002/zoo.10031

Finke, M. D. (2013). Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biology, 32(1), 27–36. https://doi.org/10.1002/zoo.21012

Finke, M. D. (2015). Complete nutrient content of three species of wild caught insects, pallid-winged grasshopper, rhinoceros beetles and white-lined sphinx moth. Journal of Insects as Food and Feed, 1(4), 281–292. https://doi.org/10.3920/JIFF2015.0033

Finke, M. D., & Oonincx, D. (2017). Nutrient content of insects. In Insects as food and feed: From production to consumption (pp. 290–316). Wageningen Academic Publishers. https://research.wur.nl/en/publications/nutri%C3%ABnt-content-of-insects

Gahukar, R. T. (2020). Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Global Food Security, 25, 100348.

Gamborg, C., Röcklinsberg, H., & Gjerris, M. (2018). Sustainable Proteins? Values Related to Insects in Food Systems. In A. Halloran, R. Flore, P. Vantomme, & N. Roos (Eds.), Edible Insects in Sustainable Food Systems (pp. 199–211). Springer International Publishing. https://doi.org/10.1007/978-3-319-74011-9_13

Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P. K., Toulmin, C., Vermeulen, S. J., & Godfray, H. C. J. (2013). Sustainable Intensification in Agriculture: Premises and Policies. Science, 341(6141), 33–34. https://doi.org/10.1126/science.1234485

Gasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry, 23, 67–79.

Ghosh, S., Lee, S.-M., Jung, C., & Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20(2), 686–694.

Halloran, A., Hanboonsong, Y., Roos, N., & Bruun, S. (2017). Life cycle assessment of cricket farming in north-eastern Thailand. Journal of Cleaner Production, 156, 83–94.

Han, R., Shin, J. T., Kim, J., Choi, Y. S., & Kim, Y. W. (2017). An overview of the South Korean edible insect food industry: Challenges and future pricing/promotion strategies. Entomological Research, 47(3), 141–151. https://doi.org/10.1111/1748-5967.12230

Handley, M. A., Hall, C., Sanford, E., Diaz, E., Gonzalez-Mendez, E., Drace, K., Wilson, R., Villalobos, M., & Croughan, M. (2007). Globalization, Binational Communities, and Imported Food Risks: Results of an Outbreak Investigation of Lead Poisoning in Monterey County, California. American Journal of Public Health, 97(5), 900–906. https://doi.org/10.2105/AJPH.2005.074138

Harlystiarini, H., Mutia, R., Wibawan, I. W. T., & Astuti, D. A. (2019). In vitro antibacterial activity of black soldier fly (Hermetia illucens) larva extracts against gram-negative bacteria. Buletin Peternakan, 43(2), 125–129.

Hartmann, C., & Siegrist, M. (2017). Insects as food: Perception and acceptance. Findings from current research. Ernahrungs Umschau, 64(3), 44–50.

Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience, 67(4), 386–391.

Ibañez-Peinado, D., Ubeda-Manzanaro, M., Martínez, A., & Rodrigo, D. (2020). Antimicrobial effect of insect chitosan on Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes survival. PLoS One, 15(12), e0244153.

Imathiu, S. (2023). NFS Journal. https://www.researchgate.net/profile/Samuel-Imathiu/publication/337422900_Benefits_and_food_safety_concerns_associated_with_consumption_of_edible_insects/links/5ded2b1792851c83646dfc8c/Benefits-and-food-safety-concerns-associated-with-consumption-of-edible-insects.pdf

Imsland, A. K., Reynolds, P., Hangstad, T. A., Jónsdóttir, Ó. D. B., Noble, T., Wilson, M., Mackie, J. A., Elvegård, T. A., Urskog, T. C., & Mikalsen, B. (2018). Feeding behaviour and growth of lumpfish ( Cyclopterus lumpus L.) fed with feed blocks. Aquaculture Research, 49(5), 2006–2012. https://doi.org/10.1111/are.13657

Ismail, B. P., Senaratne-Lenagala, L., Stube, A., & Brackenridge, A. (2020). Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers, 10(4), 53–63.

Jayanegara, A., Sholikin, M. M., Sabila, D. A., Suharti, S., & Astuti, D. A. (2017). Lowering Chitin Content of Cricket (Gryllus assimilis) Through Exoskeleton Removal and Chemical Extraction and its Utilization as a Ruminant Feed in vitro. Pakistan Journal of Biological Sciences: PJBS, 20(10), 523–529.

Ji, K. ‐M., Zhan, Z. ‐K., Chen, J. ‐J., & Liu, Z. ‐G. (2008). Anaphylactic shock caused by silkworm pupa consumption in China. Allergy, 63(10), 1407–1408. https://doi.org/10.1111/j.1398-9995.2008.01838.x

Kamemura, N., Sugimoto, M., Tamehiro, N., Adachi, R., Tomonari, S., Watanabe, T., & Mito, T. (2019). Cross-allergenicity of crustacean and the edible insect Gryllus bimaculatus in patients with shrimp allergy. Molecular Immunology, 106, 127–134.

Khan, S., Khan, R. U., Sultan, A., Khan, M., Hayat, S. U., & Shahid, M. S. (2016). Evaluating the suitability of maggot meal as a partial substitute of soya bean on the productive traits, digestibility indices and organoleptic properties of broiler meat. Journal of Animal Physiology and Animal Nutrition, 100(4), 649–656. https://doi.org/10.1111/jpn.12419

Kinyuru, J. N., Mogendi, J. B., Riwa, C. A., & Ndung’u, N. W. (2015). Edible insects—a novel source of essential nutrients for human diet: Learning from traditional knowledge. Animal Frontiers, 5(2), 14–19.

Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., & Nout, M. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26(2), 628–631.

Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26.

Kroeckel, S., Harjes, A.-G., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., & Schulz, C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364, 345–352.

Ksenija, N. (2018). Mycotoxins – climate impact and steps to prevention based on prediction. Acta Veterinaria, 68(1), 1–15. https://doi.org/10.2478/acve-2018-0001

Lähteenmäki-Uutela, A., & Grmelová, N. (2016). European law on insects in food and feed. European Food and Feed Law Review, 2–8.

Lease, H. M., & Wolf, B. O. (2011). Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology, 36(1), 29–38. https://doi.org/10.1111/j.1365-3032.2010.00767.x

Leiber, F., Gelencsér, T., Stamer, A., Amsler, Z., Wohlfahrt, J., Früh, B., & Maurer, V. (2017). Insect and legume-based protein sources to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renewable Agriculture and Food Systems, 32(1), 21–27.

Lieke, T., Meinelt, T., Hoseinifar, S. H., Pan, B., Straus, D. L., & Steinberg, C. E. W. (2020). Sustainable aquaculture requires environmental‐friendly treatment strategies for fish diseases. Reviews in Aquaculture, 12(2), 943–965. https://doi.org/10.1111/raq.12365

Liu, X., Chen, X., Wang, H., Yang, Q., ur Rehman, K., Li, W., Cai, M., Li, Q., Mazza, L., & Zhang, J. (2017). Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One, 12(8), e0182601.

Lloyd, S. J., Kovats, R. S., & Chalabi, Z. (2011). Climate Change, Crop Yields, and Undernutrition: Development of a Model to Quantify the Impact of Climate Scenarios on Child Undernutrition. Environmental Health Perspectives, 119(12), 1817–1823. https://doi.org/10.1289/ehp.1003311

Longvah, T., Manghtya, K., & Qadri, S. S. Y. H. (2012). Eri silkworm: A source of edible oil with a high content of α‐linolenic acid and of significant nutritional value. Journal of the Science of Food and Agriculture, 92(9), 1988–1993. https://doi.org/10.1002/jsfa.5572

Looy, H., Dunkel, F. V., & Wood, J. R. (2014). How then shall we eat? Insect-eating attitudes and sustainable foodways. Agriculture and Human Values, 31, 131–141.

Looy, H., & Wood, J. R. (2006). Attitudes toward invertebrates: Are educational" bug banquets" effective? The Journal of Environmental Education, 37(2), 37–48.

Lundy, M. E., & Parrella, M. P. (2015). Crickets are not a free lunch: Protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PloS One, 10(4), e0118785.

Makkar, H. P., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33.

Mariod, A. A. (2020). African edible insects as alternative source of food, oil, protein and bioactive components. Springer Nature. https://books.google.com/books?hl=en&lr=&id=GnDJDwAAQBAJ&oi=fnd&pg=PP5&dq=Van+Huis,+A.+Importance+of+Insects+as+Food+in+Africa.+In+African+Edible+Insects+As+Alternative+Source+of+Food,+Oil,+Protein+and+Bioactive+Components%3B+Adam+Mariod,+A.,+Ed.%3B+Springer+International+Publishing:+Cham,+Switzerland,+2020%3B+pp.+1%E2%80%9317,+ISBN+978-3-030-32952-5+&ots=xIhA7wK5jd&sig=vHhlHTJEHUuS0V6qpoIKuFPfOb0

Megido, R. C., Gierts, C., Blecker, C., Brostaux, Y., Haubruge, É., Alabi, T., & Francis, F. (2016). Consumer acceptance of insect-based alternative meat products in Western countries. Food Quality and Preference, 52, 237–243.

Mela, D. J. (1999). Food choice and intake: The human factor. Proceedings of the Nutrition Society, 58(3), 513–521.

Melo, V., Garcia, M., Sandoval, H., Jiménez, H. D., & Calvo, C. (2011). Quality proteins from edible indigenous insect food of Latin America and Asia. Emirates Journal of Food and Agriculture, 23(3), 283.

Menzel, P., & d’Aluisio, F. (1998). Man eating bugs: The art and science of eating insects. (No Title). https://cir.nii.ac.jp/crid/1130282269968478592

Mézes, M. (2018). Food safety aspect of insects: A review. Acta Alimentaria, 47(4), 513–522.

Miglietta, P. P., De Leo, F., Ruberti, M., & Massari, S. (2015). Mealworms for food: A water footprint perspective. Water, 7(11), 6190–6203.

Mignon, J. (2002). L’entomophagie: Une question de culture? Tropicultura, 20(3). https://orbi.uliege.be/handle/2268/27823

Millington, K., & Cleland, J. (2017). Counting people and making people count: Key sources of population projections. https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/13013

Mlček, J., Rop, O., Borkovcova, M., & Bednářová, M. (2014). A comprehensive look at the possibilities of edible insects as food in Europe-a review. Polish Journal of Food and Nutrition Sciences. https://publikace.k.utb.cz/handle/10563/1003895

Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Fundamentals and Applications of Chitosan. In G. Crini & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 35 (Vol. 35, pp. 49–123). Springer International Publishing. https://doi.org/10.1007/978-3-030-16538-3_2

Mustonen, S., & Tuorila, H. (2010). Sensory education decreases food neophobia score and encourages trying unfamiliar foods in 8–12-year-old children. Food Quality and Preference, 21(4), 353–360.

Musundire, R., Zvidzai, C. J., Chidewe, C., Ngadze, R. T., Macheka, L., Manditsera, F. A., Mubaiwa, J., & Masheka, A. (2016). Nutritional and bioactive compounds composition of Eulepida mashona, an edible beetle in Zimbabwe. Journal of Insects as Food and Feed, 2(3), 179–187. https://doi.org/10.3920/JIFF2015.0050

Musundire, R., Zvidzai, C. J., Chidewe, C., Samende, B. K., & Manditsera, F. A. (2014). Nutrient and anti-nutrient composition of Henicus whellani (Orthoptera: Stenopelmatidae), an edible ground cricket, in south-eastern Zimbabwe. International Journal of Tropical Insect Science, 34(4), 223–231.

Mwangi, M. N., Oonincx, D. G., Stouten, T., Veenenbos, M., Melse-Boonstra, A., Dicke, M., & Van Loon, J. J. (2018). Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 31(2), 248–255.

Nakagaki, B. J., & Defoliart, G. R. (1991). Comparison of diets for mass-rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. Journal of Economic Entomology, 84(3), 891–896.

Nelson, G., Cai, Z., Hassan, R., Godfray, C., Santos, M., & Swaminathan, H. (2012). Food security and climate change: A report by the high level panel of experts on food security and nutrition. https://repository.iimb.ac.in/handle/2074/13744

Nonaka, K., & Yanagihara, H. (2020). Reviving the consumption of insects in Japan: A promising case of hebo (Vespula spp., wasps) by high school club activities. Journal of Insects as Food and Feed, 6(1), 45–50. https://doi.org/10.3920/JIFF2019.0005

Nu, C. T., MacLeod, P., & Barthelemy, J. (1996). Effects of age and gender on adolescents’ food habits and preferences. Food Quality and Preference, 7(3–4), 251–262.

Nyberg, M., Olsson, V., & Wendin, K. (2021). ‘Would you like to eat an insect?’—Children’s perceptions of and thoughts about eating insects. International Journal of Consumer Studies, 45(2), 248–258. https://doi.org/10.1111/ijcs.12616

Offenberg, J. (2011). Oecophylla smaragdina food conversion efficiency: Prospects for ant farming: Weaver ant farming. Journal of Applied Entomology, 135(8), 575–581. https://doi.org/10.1111/j.1439-0418.2010.01588.x

Ojha, S., Bußler, S., & Schlüter, O. K. (2020). Food waste valorisation and circular economy concepts in insect production and processing. Waste Management, 118, 600–609.

Okezie, O. A., Kgomotso, K. K., & Letswiti, M. M. (2010). Mopane worm allergy in a 36-year-old woman: A case report. Journal of Medical Case Reports, 4(1), 42. https://doi.org/10.1186/1752-1947-4-42

Oonincx, D. G. A. B., & Dierenfeld, E. S. (2012). An Investigation Into the Chemical Composition of Alternative Invertebrate Prey: Nutrient Content of Alternative Prey Species for Insectivores. Zoo Biology, 31(1), 40–54. https://doi.org/10.1002/zoo.20382

Oonincx, D. G. A. B., Laurent, S., Veenenbos, M. E., & Van Loon, J. J. A. (2020). Dietary enrichment of edible insects with omega 3 fatty acids. Insect Science, 27(3), 500–509. https://doi.org/10.1111/1744-7917.12669

Oonincx, D. G., & De Boer, I. J. (2012). Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS One, 7(12), e51145.

Oonincx, D. G., Van Broekhoven, S., Van Huis, A., & van Loon, J. J. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS One, 10(12), e0144601.

Oonincx, D. G., Van Itterbeeck, J., Heetkamp, M. J., Van Den Brand, H., Van Loon, J. J., & Van Huis, A. (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS One, 5(12), e14445.

Oonincx, D., Van Keulen, P., Finke, M. D., Baines, F. M., Vermeulen, M., & Bosch, G. (2018). Evidence of vitamin D synthesis in insects exposed to UVb light. Scientific Reports, 8(1), 10807.

Opara, M. N., Sanyigha, F. T., Ogbuewu, I. P., & Okoli, I. C. (2012). Studies on the production trend and quality characteristics of palm grubs in the tropical rainforest zone of Nigeria. Journal of Agricultural Technology, 8(3), 851–860.

Organization, W. H. (2019). Global action plan on physical activity 2018-2030: More active people for a healthier world. World Health Organization. https://books.google.com/books?hl=en&lr=&id=RnOyDwAAQBAJ&oi=fnd&pg=PA48&dq=World+Health+Organ.+2018.+Global+Nutrition+Policy+Review+2016%E2%80%932017.+Geneva:+World+Health+Organ.&ots=GPjBOdPF-n&sig=789mMFXekAF07Y_nS5ikXU6B3Gg

Osimani, A., Garofalo, C., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Pasquini, M., Mozzon, M., Raffaelli, N., & Ruschioni, S. (2017). Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. European Food Research and Technology, 243, 1157–1171.

Payne, C. L. R., Scarborough, P., Rayner, M., & Nonaka, K. (2016). Are edible insects more or less ‘healthy’than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over-and undernutrition. European Journal of Clinical Nutrition, 70(3), 285–291.

Pennino, M., Dierenfeld, E. S., & Behler, J. L. (1991). Retinol, α‐tocopherol and proximate nutrient composition of invertebrates used as feed. International Zoo Yearbook, 30(1), 143–149. https://doi.org/10.1111/j.1748-1090.1991.tb03477.x

Pereira, N. R., Ferrarese-Filho, O., Matsushita, M., & de Souza, N. E. (2003). Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. Journal of Food Composition and Analysis, 16(4), 451–457.

Petersen, M., Olson, O., & Rao, S. (2020). University student perspectives of entomophagy: Positive attitudes lead to observability and education opportunities. Journal of Insect Science, 20(5), 30.

Pieterse, E., & Pretorius, Q. (2013). Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical-and broiler-based biological assays. Animal Production Science, 54(3), 347–355.

Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., & Nandagopal, S. (2004). Water resources: Agricultural and environmental issues. BioScience, 54(10), 909–918.

Premalatha, M., Abbasi, T., Abbasi, T., & Abbasi, S. A. (2011). Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renewable and Sustainable Energy Reviews, 15(9), 4357–4360.

Punzo, F. (2003). Nutrient composition of some insects and arachnids. Florida Scientist, 84–98.

Raheem, D., Carrascosa, C., Oluwole, O. B., Nieuwland, M., Saraiva, A., Millán, R., & Raposo, A. (2019). Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Critical Reviews in Food Science and Nutrition, 59(14), 2169–2188. https://doi.org/10.1080/10408398.2018.1440191

Ramos‐Elorduy, J. (2009). Anthropo‐entomophagy: Cultures, evolution and sustainability. Entomological Research, 39(5), 271–288. https://doi.org/10.1111/j.1748-5967.2009.00238.x

Ribeiro, J. C., Cunha, L. M., Sousa‐Pinto, B., & Fonseca, J. (2018). Allergic risks of consuming edible insects: A systematic review. Molecular Nutrition & Food Research, 62(1), 1700030. https://doi.org/10.1002/mnfr.201700030

Rozin, P., & Fallon, A. E. (1987). A perspective on disgust. Psychological Review, 94(1), 23.

Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735

Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., & Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890–905.

Sánchez-Muros, M.-J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. Journal of Cleaner Production, 65, 16–27.

Schiavone, A., De Marco, M., Martínez, S., Dabbou, S., Renna, M., Madrid, J., Hernandez, F., Rotolo, L., Costa, P., Gai, F., & Gasco, L. (2017). Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. Journal of Animal Science and Biotechnology, 8(1), 51. https://doi.org/10.1186/s40104-017-0181-5

Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., Vogel, S., Heinz, V., Jäger, H., Bandick, N., Kulling, S., Knorr, D., Steinberg, P., & Engel, K. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition & Food Research, 61(6), 1600520. https://doi.org/10.1002/mnfr.201600520

Schmitt, E., & de Vries, W. (2020). Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Current Opinion in Green and Sustainable Chemistry, 25, 100335.

Shin, J. T., Baker, M. A., & Kim, Y. W. (2018). Edible Insects Uses in South Korean Gastronomy: “Korean Edible Insect Laboratory” Case Study. In A. Halloran, R. Flore, P. Vantomme, & N. Roos (Eds.), Edible Insects in Sustainable Food Systems (pp. 147–159). Springer International Publishing. https://doi.org/10.1007/978-3-319-74011-9_10

Smetana, S., Palanisamy, M., Mathys, A., & Heinz, V. (2016). Sustainability of insect use for feed and food: Life Cycle Assessment perspective. Journal of Cleaner Production, 137, 741–751.

Smil, V. (2002). Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme and Microbial Technology, 30(3), 305–311.

Smola, M. A., Oba, P. M., Utterback, P. L., Sánchez-Sánchez, L., Parsons, C. M., & Swanson, K. S. (2023). Amino acid digestibility and protein quality of mealworm-based ingredients using the precision-fed cecectomized rooster assay. Journal of Animal Science, 101. https://academic.oup.com/jas/article/doi/10.1093/jas/skad012/6974693?login=true

Steinfeld, H. (2006). Livestock’s long shadow: Environmental issues and options. Food & Agriculture Org. https://books.google.com/books?hl=en&lr=&id=1B9LQQkm_qMC&oi=fnd&pg=PR16&dq=Steinfeld,+H.,+Gerber,+P.,+Wassenaar,+T.,+Castel,+V.,+Rosales,+M.,+de+Haan,+C.+(2006).+Livestock%E2%80%99s+Long+Shadow:+Environmental+Issues+and+Options:+Food+and+Agriculture+Organization.+Available+online+at:+https://www.europarl.europa.eu/climatechange/doc/+FAO%2520report%2520executive%2520summary.pdf+(accessed+November+23,+2022).&ots=LP12cYeMmK&sig=0_24g4Pu_jQJfrRoWvTSHYZPA8w

Sun-Waterhouse, D., Waterhouse, G. I., You, L., Zhang, J., Liu, Y., Ma, L., Gao, J., & Dong, Y. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Research International, 89, 129–151.

Ter Beek, A., & Brul, S. (2010). To kill or not to kill Bacilli: Opportunities for food biotechnology. Current Opinion in Biotechnology, 21(2), 168–174.

Testa, M., Stillo, M., Maffei, G., Andriolo, V., Gardois, P., & Zotti, C. M. (2017). Ugly but tasty: A systematic review of possible human and animal health risks related to entomophagy. Critical Reviews in Food Science and Nutrition, 57(17), 3747–3759. https://doi.org/10.1080/10408398.2016.1162766

Thompson, S. N. (1973). A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 45(2), 467–482.

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.

Tranter, H. (2013). Insects creeping into English diets: Introducing entomophagy to school children in a provincial town. Norwich: University of East Anglia, School of Biological Sciences, 19–29.

Van Huis, A. (2016). Edible insects are the future? Proceedings of the Nutrition Society, 75(3), 294–305.

Van Huis, A. (2021). Welfare of farmed insects. Journal of Insects as Food and Feed, 7(5), 573–584. https://doi.org/10.3920/JIFF2020.0061

Van Huis, A. (2022). Edible insects: Challenges and prospects. Entomological Research, 52(4), 161–177. https://doi.org/10.1111/1748-5967.12582

Van Huis, A., & Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 43. https://doi.org/10.1007/s13593-017-0452-8

Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security. Food and agriculture organization of the United Nations. https://library.wur.nl/WebQuery/wurpubs/fulltext/258042

van Zanten, H. H., Mollenhorst, H., Oonincx, D. G., Bikker, P., Meerburg, B. G., & De Boer, I. J. (2015). From environmental nuisance to environmental opportunity: Housefly larvae convert waste to livestock feed. Journal of Cleaner Production, 102, 362–369.

Vandeweyer, D., Wynants, E., Crauwels, S., Verreth, C., Viaene, N., Claes, J., Lievens, B., & Van Campenhout, L. (2018). Microbial Dynamics during Industrial Rearing, Processing, and Storage of Tropical House Crickets (Gryllodes sigillatus) for Human Consumption. Applied and Environmental Microbiology, 84(12), e00255-18. https://doi.org/10.1128/AEM.00255-18

Vane-Wright, R. I. (1991). Why not eat insects? Bulletin of Entomological Research, 81(1), 1–4.

Vangsoe, M. T., Joergensen, M. S., Heckmann, L.-H. L., & Hansen, M. (2018). Effects of insect protein supplementation during resistance training on changes in muscle mass and strength in young men. Nutrients, 10(3), 335.

Veldkamp, T., Van Duinkerken, G., van Huis, A., Lakemond, C. M. M., Ottevanger, E., Bosch, G., & Van Boekel, T. (2012). Insects as a sustainable feed ingredient in pig and poultry diets: A feasibility study= Insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: een haalbaarheidsstudie. Wageningen UR Livestock Research. https://library.wur.nl/WebQuery/wurpubs/livestock-reports/428703

Verhoeckx, K. C., van Broekhoven, S., den Hartog-Jager, C. F., Gaspari, M., de Jong, G. A., Wichers, H. J., van Hoffen, E., Houben, G. F., & Knulst, A. C. (2014). House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food and Chemical Toxicology, 65, 364–373.

Williams, J. P., Williams, J. R., Kirabo, A., Chester, D., & Peterson, M. (2016). Nutrient content and health benefits of insects. In Insects as sustainable food ingredients (pp. 61–84). Elsevier. https://www.sciencedirect.com/science/article/pii/B978012802856800003X

Wood, J. R., & Looy, H. (2000). My ant is coming to dinner: Culture, disgust, and dietary challenges. Proteus-Shippensburg,, 17(1), 52–56.

Yates-Doerr, E. (2015). The world in a box? Food security, edible insects, and “One World, One Health” collaboration. Social Science & Medicine, 129, 106–112.

Younes, I., Hajji, S., Frachet, V., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. International Journal of Biological Macromolecules, 69, 489–498.

Downloads

Published

2024-04-29

Issue

Section

Review Articles

How to Cite

Insect as a promising food source: implications for sustainable consumption across species. a review. (2024). Zoo Botanica, 2(1), 53-71. https://doi.org/10.55627/zoobotanica.002.01.0591

Similar Articles

You may also start an advanced similarity search for this article.