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Abstract 
Toxoplasma gondii is a parasite intracellular in nature that affects pregnant animals and humans especially immunocompromised 

persons. Infected hosts show a robust inherent response followed by an adaptive response to contain the parasitic infection. 

More focus has recently been placed on innate lymphocytes, inflammatory monocytes, and inherent immunological processes. 

The operation of MyD88 independent pathways is necessary for these processes to function. Despite the host's immense immune 

reaction, the parasite has evolved to overcome the host's immune response either by down-regulation of signaling pathways or 

altering host gene expression. Also, the parasite continues to thrive as a lifelong infection in the infected individuals and may 

revive to its lethal form in stress conditions. 
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1. Introduction

Food-borne infections are one of the major issues 

around the globe and toxoplasmosis is among the 

leading pathogens(Rani and Pradhan 2021). This 

pathogen can be transmitted through the oral 

route via cyst ingestion from improperly cooked 

meat, and raw fruits and from mother to fetus 

through placental route. It is commonly thought 

that 1/3rd of the population on earth has a chronic 

infection but disease symptoms are manifested in 

immunocompromised individuals only(Almeria 

et al. 2021). However, a majority of the parasite 

population is eliminated in immunocompetent 

individuals due to aggressive response by the 

Innate and acquired immune system (Sasai, 

Pradipta, and Yamamoto 2018). Although a 

sufficient immune response is generated in 

toxoplasma infection, the parasite has developed 

tactics to mimic this response and cause prolonged 

infection (Lima and Lodoen 2019). The initial 

response in toxoplasma infection is provided by 

innate immunity which has been broadly 

explored. Apart from the crucial role of Innate 

response acquired immunity is also necessary for 

host survival. CD8+ and CD4+ T cell-mediated 

immunity is essential to keep parasites in chronic 

infection and to inhibit the reactivation of dormant 

parasites (Khan, Hwang, and Moretto 2019). This 

review aims at the discussion about the interaction 

of parasite with innate and acquired immune 

systems, immune evasion, and persistence of 

Toxoplasma gondii in the host. 
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2. Interaction with Innate Immune System 

The inherent immune response shows an initial 

response against invading pathogens(Yarovinsky 

2014). This immune response is moderated by cell 

surface receptors such as NLRs (Nod-like 

receptors) and TLRs (Toll-like receptors) (Sasai 

and Yamamoto 2019). An adapter protein of TLRs 

MyD88 has a crucial role in inhibiting parasitic 

infection and it has been accepted through 

different studies(Scanga et al. 2002). TLR11 and 

TLR12 among Toll-Like Receptors are activated by 

parasitic protein profiling and are involved in host 

protection, while TLR2, TLR4, and TLR7 have a 

supportive role in parasitic infection (Andrade et 

al. 2013, Mercer et al. 2020). Although MyD88 and 

TLRs mediated immune response is important for 

innate immunity against Toxoplasma gondii 

infection but MyD88 pathway produces 

protection against T. gondii through IFNγ 

production (Snyder et al. 2021). Toxoplasma gondi 

infection and TLR response are well studied in 

mice as compared to the human species which 

lacks TLR-11 and TLR-12 receptors (Gazzinelli et 

al. 2014). In human infection alarmin released 

from infected cells is detected by dendritic cells 

(DCs) and in response CCL2 is secreted which 

causes enhanced monocyte response (Safronova et 

al. 2019). Macrophages and Dendritic cells are the 

important agents that detect microbes mediated 

by TLRs and initiate biological mechanisms such 

as antigen detection, cytokine production, and 

germicidal functions in these cells(Poncet, 

Blanchard, and Marion 2019). Macrophages, DCs, 

and Neutrophils produce cytokine and IL-12 

which have the primary role of host defense 

against T. gondii invasion (Mukhopadhyay, 

Arranz-Solís, and Saeij 2020). Mouse experiments 

showed conventional DC1 was a major source of 

IL-12 in T. gondii invasion (Aliberti et al. 2000). 

However, in humans, conventional DC1 is non-

stimulant and IL-12 production is mainly 

mediated by conventional DC2 cells(Tosh et al. 

2016). In addition to Dendritic Cells, macrophages 

also show supportive function in T. gondii 

infection. Latest studies show that murine 

macrophages synthesize inflammasomes which 

may act as a secondary inhibition mechanism 

against T. gondii invasion (López-Yglesias et al. 

2019). This process includes caspase-intervened 

modification of IL1 and IL12 which causes 

elimination of pathogen invaded cells. Despite the 

function of macrophages in the inhibition of 

Toxoplasma gondii multiplication, this pathogen 

can target these cells and change their functional 

ability by inhibiting IRGs (Immune-Related 

GTPases) to the parasitophorous vacuole 

membrane. This activity is carried out by rhoptry 

proteins (RP5, RP17, and RP18) secreted during 

the formation of moving junction by the pathogen 

(Park and Hunter 2020) and escapes the action of 

IFNγ an IRG-induced mechanism for parasitic 

elimination (Frickel and Hunter 2021). The most 

prominent result of T.gondii infection in 

immunocompromised ones is encephalitis(Marra 

2018). Interestingly, the inherent immune system 

has an important part in limiting pathogen 

replication in the brain through inflammatory 

monocytes (Schneider et al. 2019). These cells 

physically develop Gr1 and Ly6C when 

stimulated by CCR2 and their protective efficiency 

is dependent on the ability to secrete Nitric oxide, 

IL1, IL6, and TNFα(Biswas et al. 2015). Moreover, 

inflammatory monocytes change to monocyte-

derived macrophage and monocyte-derived 

dendritic cells that have an important role in 

limiting T.gondii-induced encephalitis(Matta et al. 

2021). Microglia cells which are part of the innate 

immune system have a role in antigen detection 

and parasite elimination from nervous tissues in 

toxoplasmosis(Batista et al. 2020). However, 

further research is needed to study the 

involvement of microglial cells in T.gondii-induced 

encephalitis. IFNγ produced by Natural Killer 

cells has an important part in immunity against 

acute Toxoplasma gondii invasion 

(Mahmoudzadeh et al. 2021). Although Natural 

Killer cells show resistance in experiments against 

Toxoplasma gondii outside the body of the  
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Figure 1: Immune evasion mechanisms of T. gondii. 

 

 

organism but its protective efficacy inside the 

organism is still ambiguous(Ivanova, Fatima, and 

Gigley 2016). Overall, it has been concluded that 

the defensive role of NK cells during 

Toxoplasmosis is dependent on their capability to 

yield IFNγ (Sasai and Yamamoto 2019). Curiously, 

during T.gondii infection an altered Natural Killer 

cells population is produced which hinders CD8+ 

T cells functioning (Ivanova et al. 2020). In contrast 

to acute infection in which during the absence of 

CD4+ T cells, Natural Killer cells have an 

important part in the immunity against T. gondii 

(Combe et al. 2005). Furthermore, it has also been 

seen that NK cells increase CD8+ T cell-mediated 

immunity during the early stages of T.gondii 

invasion (Guan et al. 2007). Besides Natural Killer 

cells, (Innate Lymphoid cells) are alternative 

equivalents that inhibit pathogens by cytokines 

secretion (Panda and Colonna 2019). Both Natural 

Killer cells and ILCs function against T.gondii 

infection and excitingly during parasitic infection 

Natural Killer cells convert to ILC1-like cells (Park 

et al. 2019). In general, the immunity provided by 

Dendritic Cells, ILCs, and inflammatory 

monocytes plays an important part in parasite 

eradication during acute infection of T.gondii. 

 

3. Adaptive Immunity  

Acquired immunity in T.gondii is mainly 

provided by CD8+ cells aided by CD4++ cells in 

long-standing infections (Khan, Hwang, and 

Moretto 2019). 

a. Role of CD4+ T Cells 

CD4+ T cells play a pivotal role in limiting T. gondii 

infection among immunocompromised patients 

like HIV patients. In an advanced study on mice 

without CD8+ T cell-mediated immunity, CD4+ T 

cell immunity plays a main controlling agent 

against T. gondii (Tussiwand et al. 2020).t is 

understood that NK cells show an immune 

response against T. gondii infection even in the 

absences of helper T cells but it cannot be 

maintained for a long time sa(Combe et al. 2005). 

CD-4+ T cells are essential for the sustenance of 

CD8+ immune response (Hwang et al. 2016). These 

studies show that persistent infection leads to 

BLIMP1-induced CD4+ depletion causing CD8+ 

functional impairment. Cancellation of BLIMP1 in 

CD4+ T cells restored their ability to induce CD8+ 

T cell functionality which is necessary for limiting 

parasite revival. Furthermore, cytokines that 

regulate the TFH (T Follicular Helper cells) subset 

also control antibody reactions against 

Toxoplasmosis(Olatunde, Hale, and Lamb 2021). 

Even though the response of B cells to T. gondii 
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invasion is not completely explained, studies 

show that mice lacking B cells are more susceptible 

to Toxoplasmosis (Kang, Remington, and Suzuki 

2000). Treg (T regulatory cells) which are another 

subset of CD-4+ T cells have a protective role 

against T. gondii but still, it is not completely 

defined. It has been recognized that during deadly 

T. gondii infection, these cells develop an effector 

behavior (Oldenhove et al. 2009). It's interesting to 

note that regulatory T cells by expressing Tbox 

(transcription factor) contribute a vital part in 

regulating the immunopathology brought on by T. 

gondii infection (Warunek et al. 2021). Similar to 

this, a decline in Treg counts in the pregnant host 

has been linked to fetal abortion caused by T. 

gondii infection (Gao et al. 2021). In general, further 

research is needed to determine the specific 

function and interaction of CD4+ T cell subsets in 

acute and chronic Toxoplasmosis. 

b. Role of CD8+ T Cells 

CD8+ T cells have a pivotal role in the defense 

against parasites of intracellular nature including 

T. gondii (Khan, Hwang, and Moretto 2019). IFNγ, 

a cytokine that is produced by CD4+, CD8+, and 

Natural Killer cells has a crucial role in assisting 

host immunity against Toxoplasma gondii. Along 

with the production of IFNγ, CD8+ cells have the 

ability to lyse the infected cells (Khan, Hwang, and 

Moretto 2019). This cytolytic activity plays a 

critical role in limiting chronic toxoplasmosis 

(Lutshumba et al. 2020). It is considered that IFNγ 

produced by the host cells plays the main role in 

limiting the acute infection of T.gondii, whereas 

cytolytic activity of CD8+ T cells has a vital role in 

limiting the persistent T. gondii infection (Suzuki 

2020). The presentation of neuronal antigen has a 

critical role in provoking CD8+ T cells mediated 

response for limiting persistent brain infection of 

T.gondii (Salvioni et al. 2019). Even though an 

elevated CD8+ T cell immune response is 

produced in infection, the increased expression of 

PD-1 checkpoint inhibitors limits the functioning 

of these cells (Bhadra et al. 2011). The basic 

mechanism behind this effect is a reduction in 

memory response development (Bhadra, Gigley, 

and Khan 2012), which limits the host response in 

reducing chronic toxoplasmosis. Even though 

CD8+ T cell subsets that react to checkpoint 

inhibitor inhibition during viral infections and 

malignancies have been observed (Collier et al. 

2021), but similar response is not observed in the 

case of toxoplasmosis. The innate immune 

response is not only crucial for limiting parasite 

replication in the initial stages but also moderates 

the acquired immune response. However, despite 

that, the long-lived response is dependent on the 

acquired immune response. One important aspect 

is that due to the depletion of CD8+ T cells, a 

moderate revival of parasites may take place in 

immune-competent individuals having chronic 

infection. In that scene, recruiting functional CD-8 

T cells may limit the spread of parasitic revival.  

 

4. Immune Evasion 

Toxoplasma gondi has evolved mechanisms to 

evade the host immune response by controlling 

the transcription process of host genes and 

controlling the activity of signaling mechanisms 

that lead to altered host signaling pathways, 

arresting infected cell apoptosis and preventing 

intracellular death as indicated in Figure 2 (Bedard 

and Krause 2007, Friedrich et al. 2017, Saeij et al. 

2007). 

Production of cytokines by signaling pathways is 

an efficient means to control the pathogens but T. 

gondii alters these pathways by activation of STAT 

3 and STAT 6 leading to down-regulation of 

IL12(Butcher et al. 2005). IFN-γ mediated immune 

response provides effective control of T. gondii 

infection but the parasite stops the increased 

activity of all the 127 genes that were upregulated 

by treatment with IFN-γ (Kim, Fouts, and 

Boothroyd 2007). GRA-18 a granular protein 

secreted by the apical secretory organelles binds 

with β-catenin destruction complex leading to its 

nuclear translocation. GRA-18 induced β-catenin 

gene expression produces CCL17 and CCL22 

which have anti-inflammatory activity thus 
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countering the immune reaction of the host (He et 

al. 2018). 

Programmed cell death (apoptosis) is an 

important pathway to get rid of pathogens but 

these organisms have adapted ways to counter 

this process to ensure their survival in the host 

species (Friedrich et al. 2017). T.gondi inhibits the 

release of Cytochrome C which n turn reduces the 

cleavage of caspase 9 and 3 leading to the 

inhibition of apoptosis. Also, the parasite induces 

an anti-apoptotic factor Mcl1 which further 

inhibits apoptosis(Goebel, Gross, and Lüder 2001, 

Goebel, Lüder, and Gross 1999). T.gondi interferes 

with initiator caspase 8 leading to low levels of 

pro-caspases 8 which in turn affects effector 

caspases and inhibits cell death by apoptosis 

(Vutova et al. 2007). 

ROS production also provides protection against 

pathogens but in the case of T. gondii infection ROS 

production in infected cells is equal to those of 

normal cells as the parasite targets NADPH 

oxidase which is necessary for increased ROS 

production in infected cells (Bedard and Krause 

2007, Shrestha et al. 2006). 

 

5. Latency and Persistence 

Toxoplasma gondi life cycle involves the transfer 

of infection from the final host (felines) to the 

intermediate host (warm-blooded animals), where 

asexual reproduction takes place (Dubey 2020). 

This parasite, which affects 1/3rd of the world 

population, has a broad spectrum of intermediate 

hosts, including humans. 

Transfer of infection from final hosts to 

intermediate host occurs through oocyst shed by 

the prior host. These parasites enter the body 

through an intermediate host, where they mature 

into the asexual tachyzoite stage, which multiplies 

and spreads throughout the body to cause 

toxoplasmosis (Montoya and Liesenfeld 2004). In 

immune-competent people, the immune system 

may easily limit this acute infection stage; 

however, in immunocompromised people, the 

illness can have serious side effects including 

encephalitis (McAuley 2014). 

However, in immunocompetent individuals, these 

tachyzoites are not cleared from the body of the 

infected individual rather they convert into a 

bradyzoite form which slowly develops within 

tissues of the muscular and nervous systems 

(Remington and Cavanaugh 1965). This prolonged 

form of infection may persist within the individual 

for the rest of his life and may revive to acute form 

leading to severe pathology in case of immune 

suppression (Rougier, Montoya, and Peyron 

2017). 

The transformation from the tachyzoite phase into 

the bradyzoite phase of the parasite occurs due to 

stress factors caused by the immune system of the 

host (Bohne, Heesemann, and Gross 1994, Radke 

et al. 2006). Different changes occur when the 

parasite form changes from tachyzoite to 

bradyzoite stage such as thickening of the cyst 

wall (Ferguson and Hutchison 1987, Lemgruber et 

al. 2011), metabolic shift to anaerobic glycolysis for 

energy requirements (Denton et al. 1996, Shukla et 

al. 2018) and massive buildup of starch granules in 

cytoplasmic space (Dubey, Lindsay, and Speer 

1998). The transition between the tachyzoite and 

bradyzoite stage occurs through changes in gene 

expression along with epigenetic changes in 

histone protein also plays a part (Bougdour et al. 

2009, Kim 2018). ApiAP2 transcription factor in 

toxoplasma plays an important role in tachyzoite-

bradyzoite transformation. Notably, the discovery 

of the BFD1 transcription factor seems to play a 

key role in bradyzoite formation (Waldman et al. 

2020). 

Parasites in bradyzoite form multiply at a slow 

rate to escape the immune system of the host but 

this form also converts to lytic (tachyzoite) form on 

the arrival of favorable conditions such as a 

decrease in the host immunity due to stress. The 

increase of the host’s stress decreases stress on the 

parasite and bradyzoites again change to 

tachyzoites and another acute phase begins after a 
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chronic infection and this cycle continues till the 

death of an individual. 

Interestingly some research approaches are under 

consideration that involve either blocking of 

parasite transcription or translation programs 

which leads to inhibition of tachyzoite-bradyzoite 

interplay or epigenetic inhibition of bradyzoite 

gene expression by acetylation of histone 

proteins(Bougdour et al. 2009, Maubon et al. 2010, 

Naguleswaran et al. 2010). 

BFD1 gene knockout completely inhibits the 

ability of the parasite to change into the bradyzoite 

stage (Waldman et al. 2020). In addition to these 

several other approaches including metabolic 

alterations, disruption of cyst wall, and genetic 

engineering-induced mutations in bradyzoites are 

being explored (Buchholz et al. 2011, Sidik et al. 

2014, Nolan et al. 2018). Bradyzoites have a pivotal 

role in the persistent infection of toxoplasma and 

new treatment approaches are essentially required 

to contain this global issue. 
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