Exploring Genetic Variability of the Partial Kappa-Casein Gene in Nili-Ravi Buffalo and Sahiwal Cattle of Pakistan

Authors

  • Muhammad Naeem Riaz Animal Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad
  • Sarfraz Mehmood Animal Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad
  • Abubakar Siddique Animal Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad
  • Hafiz Muhammad Bilal Akhtar Animal Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad
  • Khansa Jamil Animal Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad
  • Aatka Jamil Animal Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad
  • Jai Parkash Kolhi Department of Animal Product Technology, Sindh Agricultural University Tandojam
  • Ghulam Muhammad Ali Animal Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad

DOI:

https://doi.org/10.55627/agrivet.03.02.0588

Keywords:

Kappa-casein, Nili-Ravi Buffalo, Sahiwal cattle, SNP

Abstract

Recent years have seen an immense spike in scientific interest in the ҡ-CN gene polymorphism because of its strong correlation with the characteristics and composition of milk. It also plays an important role in milch breed characterization and processing properties. In the current study, two breeds of Pakistan, i.e., Nili-Ravi buffalo (n= 45) and Sahiwal (n= 60), were genotyped for the ҡ-CN gene polymorphism using PCR-RFLP. Animals of Nili-Ravi buffalo were found homozygous, showing BB genotype, while genotypes AA & AB were observed in Sahiwal cattle with the genotypic frequencies 0.6 and 0.4, respectively. Sequence analysis of Nili-Ravi buffalo samples with already published sequences of the same breed has shown two SNPs with no effect on protein functionality. However, on sequence comparison with Indian Murrah buffalo replacing Threonine with Isoleucine at codon 136, which affects protein functionality, also confirmed through PROVEAN. Moreover, in Sahiwal cattle, both synonymous as well as non-synonymous substitutions were found. This work paves the door for future studies to characterize breeds and identify unique SNPs within the breed

References

Abdel Dayem, A., K. G. M. Mahmoud, M. Nawito, M. Ayoub and S. F. Darwish. 2009. Genotyping of kappa-casein gene in Egyptian buffalo bulls. Livestock Science, 122.

Alexander, L. J., A. F. Stewart, A. G. Mackinlay, T. V. Kapelinskaya, T. M. Tkach and S. I. Gorodetsky. 1988. Isolation and characterization of the bovine k‐casein gene. European Journal of biochemistry, 178: 395-401.

Alipanah, M., L. A. Kalashnikova and G. V. Rodionov. 2008. Kappa-casein and PRL-Rsa I genotypic frequencies in two Russian cattle breeds. Archivos de Zootecnia, 57: 131-38.

Awad, A., I. E. El Araby, K. M. El-Bayomi and A. W. Zaglool. 2016. Association of polymorphisms in kappa casein gene with milk traits in Holstein Friesian cattle. Japanese Journal of Veterinary Research, 64: S39-S43.

Azevedo, A., C. Nascimento, R. Steinberg, M. Carvalho, M. Peixoto, R. Teodoro, R. Verneque, S. Guimarães and M. Machado. 2008. Genetic polymorphism of the kappa-casein gene in Brazilian cattle. Genetics and Molecular Research, 7: 623-30.

Barroso, A., S. Dunner and J. J. J. o. a. s. Canon. 1998. Detection of bovine kappa-casein variants A, B, C, and E by means of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP), 76: 1535-38.

Bijl, E., R. de Vries, H. van Valenberg, T. Huppertz and T. Van Hooijdonk. 2014. Factors influencing casein micelle size in milk of individual cows: Genetic variants and glycosylation of κ-casein. International Dairy Journal, 34: 135-41.

Bonfatti, V., D. R. de Freitas, A. Lugo, D. Vicario and P. Carnier. 2019. Effects of the detailed protein composition of milk on curd yield and composition measured by model micro-cheese curd making of individual milk samples. Journal of Dairy Science, 102: 7863-73.

Caroli, A., S. Chessa and G. Erhardt. 2009. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. Journal of Dairy Science, 92: 5335-52.

Chen, C.-C., L.-Y. Chen, W.-T. Li, K.-L. Chang, M.-I. Kuo, C.-J. Chen and J.-F. Hsieh. 2021. Influence of chymosin on physicochemical and hydrolysis characteristics of casein micelles and individual caseins. Nanomaterials, 11: 2594.

Djedović, R., V. Bogdanović, P. Perišić, D. Stanojević, J. Popović and M. Brka. 2015. Relationship between genetic polymorphism of k-casein and quantitative milk yield traits in cattle breeds and crossbreds in Serbia. Genetika, 47: 23-32.

El Rafey, G. and S. F. Darwish. 2008. PCR-RFLP assay to detect genetic variants of kappa-casein gene in cattle and buffalo. Arab Journal of Biotechnology: 11-18.

Fan, X., Z. Zhang, L. Qiu, Y. Zhang and Y. Miao. 2019a. Polymorphisms of the kappa casein (CSN 3) gene and inference of its variants in water buffalo (Bubalus bubalis). Archives Animal Breeding, 62: 585-96.

Fan, X., Z. Zhang, L. Qiu, Y. Zhang and Y. J. A. A. B. Miao. 2019b. Polymorphisms of the kappa casein (CSN 3) gene and inference of its variants in water buffalo<? xmltexbreak?>(Bubalus bubalis), 62: 585-96.

Freitas, C. D., M. Z. Silva, J. P. Oliveira, A. F. Silva, M. V. Ramos and J. S. de Sousa. 2019. Study of milk coagulation induced by chymosin using atomic force microscopy. Food Bioscience, 29: 81-85.

Ghafoor, A., M. N. Riaz, A. B. Zahur, N. Abbas, M. Yousaf, A. Shah, R. Ishaq and M. Suleman. 2015. Κ‐CN gene polymorphism in Nili‐ravi buffalo, Achai and Sahiwal cattle of Pakistan. International Journal of Dairy Technology, 68: 105-10.

Haug, A., A. T. Høstmark and O. M. Harstad. 2007. Bovine milk in human nutrition–a review. Lipids in Health and Disease, 6: 1-16.

Heck, J., A. Schennink, H. Van Valenberg, H. Bovenhuis, M. Visker, J. Van Arendonk and A. Van Hooijdonk. 2009. Effects of milk protein variants on the protein composition of bovine milk. Journal of Dairy Science, 92: 1192-202.

Hobor, S., T. Kunej and P. Dovc. 2008. Polymorphisms in the kappa casein (CSN3) gene in horse and comparative analysis of its promoter and coding region. Animal Genetics, 39: 520-30.

Knudsen, B., T. Knudsen, M. Flensborg, H. Sandmann, M. Heltzen, A. Andersen, M. Dickenson, J. Bardram, P. Steffensen and S. J. A. C. B. Mansted. 2007. CLC main workbench: version 5.5.

Marziali, A. and K. Ng-Kwai-Hang. 1986. Effects of milk composition and genetic polymorphism on coagulation properties of milk. Journal of Dairy Science, 69: 1793-98.

Masina, P., A. Rando, P. Di Gregorio, G. Cosenza and A. Mancusi. 2007. Water buffalo kappa-casein gene sequence. Italian Journal of Animal Science, 6: 353-55.

Massella, E., S. Piva, F. Giacometti, G. Liuzzo, A. V. Zambrini and A. Serraino. 2017. Evaluation of bovine beta casein polymorphism in two dairy farms located in northern Italy. Italian Journal of Food Safety, 6.

Mitra, A., P. Schlee, I. Krause, J. Blusch, T. Werner, C. Balakrishnan and F. J. A. b. Pirchner. 1998. Kappa‐casein polymorphisms in Indian dairy cattle and buffalo: A new genetic variant in buffalo, 9: 81-87.

O'Riordan, N., M. Kane, L. Joshi and R. M. Hickey. 2014. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology, 24: 220-36.

Othman, O. E., F. A. Zayed, A. A. El Gawead and M. R. El-Rahman. 2011. Genetic polymorphism of three genes associated with milk trait in Egyptian buffalo. Journal of Genetic Engineering and Biotechnology, 9: 97-102.

Pesic, M. B., M. B. Barac, S. P. Stanojevic, N. M. Ristic, O. D. Macej and M. M. Vrvic. 2012. Heat induced casein–whey protein interactions at natural pH of milk: A comparison between caprine and bovine milk. Small Ruminant Research, 108: 77-86.

Rangel, A., L. Zaros, T. Lima, L. Borba, L. Novaes, L. Mota and M. Silva. 2017. Polymorphism in the Beta Casein Gene and analysis of milk characteristics in Gir and Guzerá dairy cattle. Genetics and Molecular Research, 16: 1-9.

Riaz, M. N., N. A. Malik, F. Nasreen, J. A. Qureshi and S. U. H. KHAN. 2012. Genetic variability in the kappa‐casein gene in Sahiwal, Cholistani and Red Sindhi cattle breeds. International journal of dairy technology, 65: 208-11.

Sumaiya, R., M. I. Hossain, M. M. K. Hossain, M. A. Alim, J. Nusrat, M. A. Islam, S. Md, B. A. Ara and A. Jahangir. 2020. Genotyping of cattle based on kappa-casein and alpha-lactalbumin genes. Indian Journal of Biotechnology, 19: 211-18.

Tsiaras, A., G. Bargouli, G. Banos and C. Boscos. 2005. Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows. Journal of Dairy Science, 88: 327-34.

Zhang, W., S. Zheng, P. Gao, Q. Ren, Y. Zhang, B. Chen, K. Hettinga, X. Pang, J. Lv and S. Zhang. 2023. Identification of the coagulation properties of Chinese Holstein bovine milk: Effects of milk compositions, milk protein polymorphism, and phosphorylation levels on milk coagulation ability. Food Hydrocolloids, 145: 109112.

Downloads

Published

2024-06-15

Issue

Section

Research Articles

How to Cite

Exploring Genetic Variability of the Partial Kappa-Casein Gene in Nili-Ravi Buffalo and Sahiwal Cattle of Pakistan (M. N. . Riaz, S. Mehmood, A. Siddique, H. M. B. Akhtar, K. Jamil, A. Jamil, J. P. Kolhi, & G. M. Ali , Trans.). (2024). Journal of Agriculture and Veterinary Science, 3(2), 167-176. https://doi.org/10.55627/agrivet.03.02.0588

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)